The synthesis and fabrication of one-dimensional nanoscale heterojunctions.

نویسندگان

  • Aneta J Mieszawska
  • Romaneh Jalilian
  • Gamini U Sumanasekera
  • Francis P Zamborini
چکیده

There are a variety of methods for synthesizing or fabricating one-dimensional (1D) nanostructures containing heterojunctions between different materials. Here we review recent developments in the synthesis and fabrication of heterojunctions formed between different materials within the same 1D nanostructure or between different 1D nanostructures composed of different materials. Structures containing 1D nanoscale heterojunctions exhibit interesting chemistry as well as size, shape, and material-dependent properties that are unique when compared to single-component materials. This leads to new or enhanced properties or multifunctionality useful for a variety of applications in electronics, photonics, catalysis, and sensing, for example. This review separates the methods into vapor-phase synthesis, solution-phase synthesis, template-based synthesis, and other approaches, such as lithography, electrospinning, and assembly. These methods are used to form a variety of heterojunctions, including segmented, core/shell, branched, or crossed, from different combinations of semiconductor, metal, carbon, and polymeric materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.

Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ Zn...

متن کامل

Electron transport characteristics of one-dimensional heterojunctions with multi-nitrogen-doped capped carbon nanotubes.

We present a systematic analysis of electron transport characteristics for one-dimensional heterojunctions with two multi-nitrogen-doped (multi-N-doped) capped carbon nanotubes (CNTs) facing one another at different numbers of nitrogen atoms and conformations. Our results show that the modification of the molecular orbitals by the nitrogen dopants generates conducting channels in the designed h...

متن کامل

Regiospecific synthesis of Au-nanorod/SWCNT/Au-nanorod heterojunctions.

The synthesis of precisely defined nanoscale hybrid materials remains a challenge at the frontier of chemistry and material science. In particular, the assembly of diverse high-aspect ratio one-dimensional materials such as gold nanorods and carbon nanotubes into functional systems is of ever increasing interest due to their electronic and sensing applications. To meet these challenges, methods...

متن کامل

Self-organization and nanostructural control in thin film heterojunctions.

In spite of more than two-decades of studies of molecular self-assembly, the achievement of low cost, easy-to-implement and multi-parameter bottom-up approaches to address the supramolecular morphology in three-dimensional (3D) systems is still missing. In the particular case of molecular thin films, the 3D nanoscale morphology and function are crucial for both fundamental and applied research....

متن کامل

The effect of substrate temperature on fabrication of one-dimensional nanostructures of Tellurium

Tellurium nanostructures have been prepared by physical vapor deposition method in a tube furnace. The experiments were carried out under argon gas flow at a pressure of 1 mbar. Tellurium powder was evaporated by heating at 350°C and 430°C and was condensed on substrates at 110–250°C, in the downstream of argon gas flow. The products were characterized by field emission scanning electron micros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 3 5  شماره 

صفحات  -

تاریخ انتشار 2007